CELL CYCLE-DEPENDENT ALTERATIONS OF THE TWO TYPES OF RIBONUCLEASES H IN L5178y CELLS

W. E. G. MÜLLER, W. GEURTSEN, R. K. ZAHN and J. ARENDES Institut für Physiologische Chemie, Universität, Duesbergweg, 6500 Mainz, FRG

Received 27 November 1979

1. Introduction

Since the discovery of eukaryotic ribonuclease H (RNase H; EC 3.1.4.34) [1] the physiological role of this enzyme has remained conjectural. The existence of at least two distinct RNase H activities (RNase H I and RNase H II) [2,3] accounts for the, at least partially, conflicting reports about their physiological significance. Three main hypotheses have been propounded.

- (1) Participation in DNA replication by hydrolyzing short RNA·DNA hybrid primers [3-8];
- (2) Role in the regulation of RNA biosynthesis [9,10];
- (3) Implication in conformation changes of chromosomal structure during the cell cycle [11].

Here we show that the extractable activities of RNase H I and II alter characteristically their activities during the different phases in the cell cycle of synchronized L5178y cells. Under the prerequisite that the enzyme activity is rate-limiting for a particular biochemical event in the cell the results presented in this paper might indicate that the RNase H II is involved in DNA synthesis, while RNase H I might have a function during the conformational changes in the chromatin.

2. Materials and methods

2.1. Compounds

The following materials were obtained, [methyl
3H]thymidine (spec. act. 19 Ci/mmol) from the Radiochemical Centre (Amersham); Sephadex G-100 and
dextran blue from Deutsche Pharmacia (Freiburg);

N-ethylmaleimide from Sigma (St Louis, MO).

The poly(dT)·poly([³H]rA) hybrid was prepared enzymatically [12] as in [8]. The specific activity was 4000 cpm/pmol poly([³H]rA).

2.2. Cell culture

L5178y mouse lymphoma cells were grown in Fischer's medium for leukemic cells, supplemented with 10% horse serum (Grand Island Biological Co., Grand Island, NY) in spinner culture [13]. Cell concentration and volume distribution were determined with a Model B Coulter Counter with a size-distribution plotter (Coulter Electronics, Hialeah, FL). The cells were synchronized at 2.5 × 10⁵ cells/ml by the double thymidine block method [14,15]; after release of the block >90% of the cells were at the beginning of the S-phase as measured by [3H]thymidine incorporation [15].

2.3. RNase H assay

The standard assay mixture (150 μ l) contained 30 mM Tris—HCl (pH 7.8), 5 mM 2-mercaptoethanol, 10 μ g bovine serum albumin, 10 mM MgCl₂, 100 mM KCl, 200 pmol ³H-labeled (rA) nucleotide in the poly(dT)·poly([³H]rA) hybrid form and 30 μ l of enzyme fraction. The reaction was carried out for 30 min (the reaction kinetics were linear during the incubation time); 50 μ l were placed on GF/C discs and processed as described [16]. In some experiments the specific activity was normalized to 10^7 cells. One unit is defined as the amount of enzyme necessary to solubilize 1 nmol poly([³H]rA)/30 min under standard conditions.

2.4. Separation of RNase H I and RNase H II 3-6 × 10⁷ cells were suspended in 1 ml of the TMK-buffer (30 mM Tris-HCl (pH 7.8); 5 mM 2-mercaptoethanol, 10 mM MgCl₂, 100 mM KCl) and sonicated 5 times for 10 s with cooling intervals using a Branson S-75 Sonifier (microprobe, setting 3) at $0-2^{\circ}$ C. Subsequently the homogenate was centrifuged (12 $000 \times g$, 2° C, 2 min) and the supernatant was collected quantitatively. The total supernatant was applied on a Sepharose G-100 column (1 × 45 cm) in order to separate the RNase H activity into two fractions, RNase H I and RNase H II; fig.1. The first peak containing RNase H I is observed at a V_e/V_o of 1.16 and a second distinct activity (RNase H II) appears at a V_e/V_o of 1.72.

Protein was determined by Lowry's method [17].

3. Results

3.1. Characterization of RNase H I and RNase H II

The two RNase H species I and II are distinguished by their molecular weight. While RNase H I appears at a V_e/V_o of 1.16, corresponding to mol. wt 95 000 [18], the species II elutes at a V_e/V_o of 1.72 (mol. wt 32 000). The two enzymes were tested in assays containing instead of poly(dT)·poly([³H]rA) as substrate, the polymers poly([³H]rA), poly(U)·poly([³H]rA) or poly([³H]dT). These experiments were performed under conditions essentially as in [8]; none of these substrates were degraded to any measurable extent

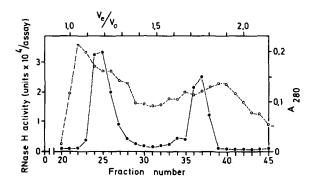


Fig.1. Separation of RNase H I from RNase H II activity on Sephadex G-100. The preparation of the crude extract obtained from 3×10^7 cells (3 h after the release from the thymidine block) is in section 2. Extract (950 μ l) was applied on a Sephadex G-100 column (1 × 45 cm) equilibrated with TMK-buffer, containing 50 mM sucrose. Elution was performed with the same buffer. Fractions of 0.6 ml were collected and 30 μ l aliquots were assayed for RNase H activity. The A_{280} (0-0) and the RNase H activity/assay (•---•) are given. Abscissa (upper scale): $V_{\rm e}/V_{\rm O}$ value [18]; $V_{\rm O}$ was determined with dextran blue.

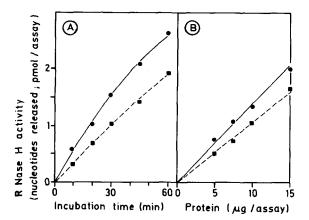


Fig. 2. RNase H I (•——•) and RNase H II activity (•——•) as a function of time (A) and of enzyme concentration (B). In the time kinetics experiments 0.0015 units of RNase H I and 0.001 units of RNase H II were used in the standard assay. In the experiments using various amounts of enzyme solution in the standard assay, RNase H I was spec. act. 0.65 units/mg protein (230 µg protein/ml) and RNase H II 0.56 units/mg protein (180 µg protein/ml). The RNase H I and II samples were obtained by Sephadex G-100 chromatography.

(data not shown). In the standard assay, containing 0.0015 units of RNase H I or 0.001 units of RNase H II (obtained after separation on Sephadex G-100), the RNase H I activity is not affected in the presence of 1 mM N-ethylmaleimide, while RNase H II activity is reduced by 95%.

The activity of both RNase H I and RNase H II shows a constant rate up to an incubation period of 30 min (fig.2A); beyond this period the rate declines. The rate of poly(A) hydrolysis is proportional to the enzyme concentration in the standard assay below $15 \mu g$ protein/assay, corresponding to 0.002 units of RNase H I and 0.0016 units of RNase H II (fig.2B).

3.2. Alteration during cell cycle

Each of the enzymes, both RNase H I and RNase H II, shows a characteristic variation in its activity during the cell cycle (fig.3). The two enzymes show a dramatic increase in their activity at the beginning of the S-phase. The maximum of RNase H II activity is only observed during S-phase; during G_2 -phase the activity drops and remains at a low level during M- and G_1 -phase. In contrast, the RNase H I activity shows high values not only during S-phase but also during G_2 -, M- and the beginning of G_1 -phase; a pronounced decrease of RNase H I level is observed at the end of G_1 -phase.

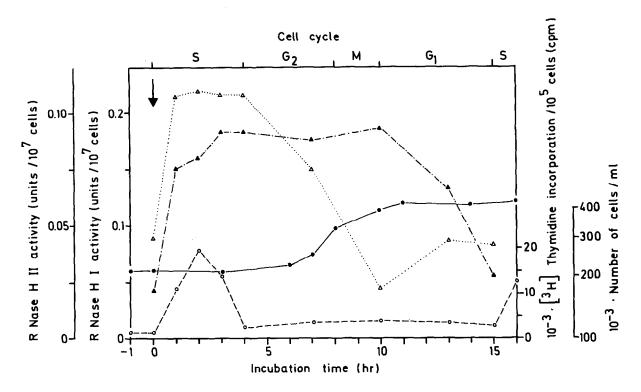


Fig. 3. Levels of RNase H I and RNase H II in L5178y cells at different cell cycle stages. The cells were synchronized by two thymidine blocks; the last hour of the second thymidine block is marked in the graph (-1). At time zero (arrow) the cells were transferred into fresh medium and incubated further for up to 16 h. The cell number $(\bullet - - \bullet)$ and the thymidine incorporation rate $(\circ - - \circ)$ were determined as in section 2. On the upper abscissa the approximate duration of the cell cycle phases are given. Cellular extracts were prepared from $3-6 \times 10^7$ cells. At the time indicated the cells were harvested and RNase H I activity was separated from RNase H II activity as described in fig.1. $(\bullet - - \bullet)$ RNase H I; $(\triangle - - - \bullet)$ RNase H II.

4. Discussion

The aim of this paper was to determine the alteration of RNase H I and RNase H II levels during the cell cycle. For that purpose a separation method (gel filtration) was chosen, which allowed a high yield during the fractionation procedure. The two enzyme species isolated from L5178y cells showed the same characteristics as the ones known from other mammalian cells [3,6,11]: absolute dependence on a DNA·RNA hybrid as substrate, insensitivity of RNase H I to N-ethylmaleimide, sensitivity of RNase H I to -SH blockers and the difference of the molecular weight between the RNase H I (75 000—110 000, depending on the determination method used [2,3]) and RNase H II (30 000—40 000 [2,4]).

The two RNase H species show characteristic alterations in their activity. While RNase H II activity shows a high level only during S-phase (5-fold higher

than during M-phase), RNase H I activity increases at the beginning of S-phase, remains constant till the beginning of G_1 -phase and decreases during G_1 . From this finding we favor the involvement of RNase H II in the removal of RNA primer during DNA replication; this assumption is also supported by data in [3]. Concerning the fluctuation of RNase H I activity during cell cycle it is too early to formulate even an hypothesis, although the idea about its role during changes in chromatin structure appears to be attractive.

Acknowledgements

This work was supported by grants from the Stiftung Volkswagenwerk (35850; W.E.G.M.) and the Liebrecht-Stiftung.

References

- [1] Hausen, P. and Stein, H. (1970) Eur. J. Biochem. 14, 278-283.
- [2] Büsen, W. and Hausen, P. (1975) Eur. J. Biochem. 52, 179-190.
- [3] Cathala, G., Rech, J., Huet, J. and Jeanteur, P. (1979) J. Biol. Chem. 254, 7353-7361.
- [4] Berkover, I., Leis, J. and Hurwitz, J. (1973) J. Biol. Chem. 248, 5914-5921.
- [5] Keller, W. (1972) Proc. Natl. Acad. Sci. USA 69, 1560-1564.
- [6] Büsen, W., Peters, J. H. and Hausen, P. (1977) Eur. J. Biochem. 74, 203-208.
- [7] Müller, W. E. G., Zahn, R. K., Arendes, J. and Falke, D. (1979) Virology 98, 100-210.
- [8] Müller, W. E. G., Falke, D., Zahn, R. K. and Arendes, J. (1980) submitted.
- [9] Dezelee, S., Sentenac, A. and Fromageot, P. (1974) J. Biol. Chem. 249, 5971-5977.

- [10] Girard, M., Marty, L. and Manteuil, S. (1974) Proc. Natl. Acad. Sci. USA 71, 1267-1271.
- [11] Wyers, F., Huet, J., Sentenac, A. and Fromageot, P. (1976) Eur. J. Biochem. 69, 385-395.
- [12] Sarngardharan, M. G., Leis, J. P. and Gallo, R. C. (1975) J. Biol. Chem. 250, 363-373.
- [13] Müller, W. E. G., Rohde, H. J., Beyer, R., Maidhof, A., Lachmann, M., Taschner, H. and Zahn, R. K. (1975) Cancer Res. 35, 2160-2168.
- [14] Tobia, A. M., Schildkraut, C. L. and Maio, J. J. (1970) J. Mol. Biol. 54, 499-515.
- [15] Müller, W. E. G., Schröder, H. C., Arendes, J., Steffen, R., Zahn, R. K. and Dose, K. (1977) Eur. J. Biochem. 76, 531-540.
- [16] Müller, W. E. G., Zahn, R. K. and Falke, D. (1978) Virology 84, 320-330.
- [17] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- [18] Determann, H. (1967) Gelchromatographie, Springer-Verlag, Berlin, Heidelberg, New York.